BIJE – Bichi Journal of Education ISSN(Print): xxxx-xxxx ISSN(Online): 2734-3375 Vol. 10, No.1 2010; pp: 101-112. Publisher: School of Education, F.C.E (T) Bichi. URL: <u>https://bijejournal.com/BIJE</u>

EFFECTS OF STAND DENSITY AND SOWING DATE ON THE GROWTH OF ROSELLE (*Hibiscus sabdariffa L.*)

DAUDA IBRAHIM DAUDAWA DEPT. OF AGRIC. ISA KAITA COLLEGE OF EDUATION. DUTSIN-MA KATSINA STATE.

ABSTRACT

Field experiment were conducted during the wet seasons in 2005 and 2006 at Samuru in the Northern Guinea Savanna to study the effect of varying number of plant per stand using 1,2,3,4 and 5 plants per stand and four sowing dates (30th July, and 14th July and August) on the growth of Roselle. Factorial combinations of the treatments were laid out in a Randomized Complete Bock Design and replicated three times. The highest stand density of 5 plants per stand significantly produces tallest plants, lowest number of leaves and branches. One plant per stand generally improved the growth of the crop. Similarly, sowing Roselle in June also resulted in good growth of the crop.

INTRODUCTION

Roselle or sorrel (Hibiscus sabdariffa L.) belongs to the family Malvaceae and is native of India and Malaysia, where were commonly cultivated. From there, cultivation of the crop spread to other parts of Africa. (Lakshmi et.al, 1994). The crop is an herbaceous upright plant growing up to 2-3m in height (Rice et.al; 1993 Messiaen, 1993). The leaves vary in size and shape; the flowers are yellow or red sometimes with dark red centers. The edible calyx is bright red, some yellow or brown and swells to become fleshy. The fruit are up to 2.5cm in length and seed contains 17% oil (Rice et.al., 1993). Roselle grows best in tropical and subtropical regions from sea level up to 900m. India, it requires a rainfall of about 1500-2000mm during its growing season (Gupta, 1989). Where rainfall is adequate, irrigation can be used as supplement. The crops grow on a deep sandy loam soil. It cultivated throughout West Africa, especially in Sierra

Leone, where is being intercropped with over vegetables (Kirby, 1993). In Nigeria, it is customary to grow it in mixture with other crops, such cereals, tree crops and on the boarders or edges of fields devoted to other crops. Roselle is usually propagated by seed, but grows readily from cuttings which result in shorter plants preferred in India for inter-planting with tree crops though the yield of calyx obtain from this type of inter-cropping is relatively low (Gupta, 1989). Seedlings may also be raised in beds and transplanted when it is 7.5 to 10cm high, but seeds are commonly planted directly in the field.

Roselle is a short - day plant. Chemical fertilizer may not be required, however, basal dose phosphorous at the rate of 30kg /ha and 50kg N/ha of nitrogen in two split doses may be applied for better yield (Aliyu, 2005). Commercial NPK fertilizer has also proved satisfactory (mansur et,al. 1995). Weeding is necessary and can be done manually at the initial stage though at 45 to 60cm height, weeds are shaded out. Harvesting of Roselle is timed according to which part is desired. For herbage purposes, the plant may be cut off 6 weeks after transplanting depending on the variety (Sarma, 1967). As the fruits of rosella ripen progressively tiers of the last of the fruits are allowed to mature. At this time the plants are cut down, stacked for a few days and then threshed. The yied in Roselle like other corps depends on proper agronomic practices and variety. Taller varieties that have more leaves yield better (Aliyu, 2005). However, calyx yield under favourable condition may range between 3 to 3.5 t/ha.

In Nigeria the leaves are normally cooked either fresh or dried and mixed with groundnut cale for eating while the dried calyx can be boiled to make juice (Zobo drink). The seeds are somehow better but are roasted as a substitute for coffee (El-Adawy and Khali, 1994). The seeds contain 17% oil (Rice et al, 1993)> nutritionally, 100g of the fresh calyx contains 1.5g protein, 2.61g fat, 12.0g ash, 126mg calcium, 273.2 phosphorous, 8.98mg iron, 0.029mg carotene, 0.117mg thiamine, 0.277mg riboflavin, 3.76mg nniacin, 6.7mg ascorbix acids and 9.2g moisture including all the essential amino acids in reasonable quantities (Rahman et al., 1991). Both the fresh leaves and seed contains reasonable amount of protein fat and carbohydrate. The seeds are excellent feed for chicken, the residue after oil extraction is valued as cattle feed. The leaves or calyxes are used as diuretic to decrease blood viscosity and stimulate intestinal peristalsis in Africa and elsewhere. The Roselle extract reduces blood pressure. Calyx infusion called sudan te' is taken to relieve cough in East Africa. The voiled leaves are applied to cracks in the feet, on boils and ulcers for medication. A lotion made from the leaves is used on sores and wounds.

OBJECTIVES OF THE STUDY

The objectives of this study are to investigate:

- 1. the effect of stand density on the growth of Roselle
- 2. the effect of sowing date on the growth of Roselle
- 3. the interaction of stand density and sowing date on the growth of Roselle.

4.

MATERIALS AND METHODS

Experimental site:

Fields experiment were conducted during the 2005 and 2006 wet seasons at the research farm of the institute for Agricultural Research (IAR), Samaru (11°11'N, 7°38'E) in the Northern Guinea Savanna ecological zone of Nigeria.

TREATMENT AND EXPERIMENTAL DESIGN

The treatment consisted of four different sowing dates at intervals of two weeks each, starting from 30th June to 11th August, 2005 (end of June, middle of July, end of July and middle of August) and five stand densities viz: 1,2,3,4 and 5 plants/hole (26,666,53,332,79,998,106,664 and 133,330 plants/hectare, respectively) that were factorily combined and laid out in randomized complete block design. The treatments were replicated three times.

CULTURAL PRACTICES

The land was ploughed, harrowed, ridged and marked out into plots. The gross plot size was $11.3m^2$ (3x3.75m) involving four rows while the net plot size was 9 m² The plants were sown as per the sowing date treatment in both years. The plant/stand were spaced at 75x50cm using seed rate in accordance with the standard population for each treatment. Local variety (Samaru 1882) of Roselle was used. Hoe weeding was carried out at intervals of three to keep the plots weed free. A total of four hoe weeding were carried out beginning from three weeks after sowing (WAS) Nitrogen fertilizer at the rate of 50kgN/hectare was applied in two split doses at 3 and 6 WAS at the rate of 25kgN/ha each using urea fertilizer. However, there was a basal application of 30kgP₂O₅/hectare at planting using single super phosphate fertilizer.

DATA COLLECTION.

Recording of observations were done at 4,6,8 and 10 WAS on the following growth parameters. **Plant Height:** Four plants were randomly tagged/plot. The heights of the tagged plants were measured in centimeters from the ground level of tip of the plants using a meter rule. Mean height per plants was later determined.

Number of Leaves/Plants: This was taken by counting the total number of leaves from the tagged plants and the mean was later calculated.

Number of Branches/Plants: This was taken by counting the total number of branches from the tagged plants and later the mean determined.

RESULTS AND DISCUSSION

EFFECT OF STAND DENSITY AND SOWING DATE ON PLANT HEIGHT.

Table 1 shows the effect of varying stand densities and sowing dates on plant height of Roselle at 4,6,8 and 10 weeks after sowing (WAS). Highest stand density of 5 plants/stand significantly produced the tallest plants in both years when compared with lowest density which had the shortest plant. Showing on 30th June at all sampling periods except at WAS of 2006 significantly resulted in taller plants in both years. Sowing on 14th July produced tallest plants at 4 WAS in 2006, each delay in sowing resulted in significantly shorter plants as 8 and 10 WAS in both seasons.

Table 2 shows the interaction between stand density and sowing date of Roselle on height at 8 WAS in 2005. When different sowing dates were compared at the sane density, it was observed that at 8 WAS in 2005 wet seasons, 2 plants/stand produced tallest plants while 3,4 and 5 plants per stand were statistically at par but taller than 1 plant/stand.

NUMBER OF LEAVES/PLANT

Table 3 shows the effect of stand density and sowing date on the number of leaves of Roselle/plant at different sampling periods of the two year trials. One plant/stand significantly had more leaves per plant compared with other densities in both years. Similarly, sowing on 30th June significantly resulted in higher number of leaves/plant in both years. However, there were no significant differences in leaves produced by plants sown on 30th June and 28th July and also between 30th June and 14th July at 4 and 6 WAS respectively in 2005.

NUMBER OF BRANCHES/PLANTS

Table 4 shows the effect density and sowing date on the number of Roselle branches/plant at different periods of sampling. One plant/stand had significantly recorded higher number of branches/plant between 6 - 10 WAS in both years. The difference in number of branches/plant between 1 and 2 plants/stands at 4 WAS in 2005 and in all the densities at 4 WAS in 2006 was no significant. Sowing on 14th July significantly result in higher number of branches/plants compared to those sown on 30th June at 4 WAS in 2006 was not significant. Each delay in sowing significant interaction between stand densities and sowing date of Roselle on the number of branches/plant at 10 WAS (Table 5) in both years. In the table when 2 and 3 plants/stand were used, each delay in sowing resulted in significant reduction in number of branches/plant.

CONCLUSION

From the study, it can be concluded that early planting of Roselle using 1 plant/stand improved both number of leaves and branches but decreased plant height.

RECOMMENDATION

Farmers in the Northern Guinea Savanna should plant Roselle earlier (in June) and use fewer stand density (1 plant/stand)

REFERENCES

Aliyu, L. (2005). Evaluation of the agronomic, genetic variability and heritability in Roselle (*Hibiscus sabdariffa L.*) at Samaru Nigeria. *Crop Research*. <u>30</u> (3): 409-413
EL-Adawy, T.A. and Khalil, A.H. (1994). Characteristics of Roselle seeds as a new source of protein and Lipid. *Journal of Agriculture and Food Chemistry* <u>42</u> (9): 18961900
Gupta, S.K (1989). Studies on intercropping in Roselle (*Hibiscus sabdariffa L.*) Indian *Phytopathology* <u>34 (3): 361-363</u>
Kirby, R.H. (1963). <u>Vegetable fibres</u>, Leonard Hill; London PP.358
Lakshmi, M.B, Naidu, M.V. Reddy C.V. (1995). Effect of time of sowing and topping on seed yield of roselle (*Hibiscus sabdariffa L.*) *Indian journal of Agronomy* <u>40</u> (4):682-685
Mansur, CP, Kubsad, V.S, Gowda, D.S. (1995). Nutrient uptake in mesta (Hibiscus sabdariffa L.) under varying fertilizer combinations *Madras Agricultural Journal*. 82 (68): 480-482.

Messiean, C.M. (1994). <u>The tropical vegetable Garden</u> 1st ed. CTA Macmillan, London. Pages 428

Rahman, M.M. Anwar, K. Maniruzzaman, A.F. and Roy, N.C. (1991). Effect of topping of cotton sown on different dates *Bangladesh journal of scientific and industrial Research*. 26 (1-4)

Rice, R.P. Rice, L.N. and Tindal, H,D. (1993). <u>Fruits and Vegetable production in Warm</u> <u>Climate</u>. 2nd ed. The Macmillan Press, London. Pages 533

Sarma, M.S. (1967). Breeding procedures for hibiscus. <u>Indian Council of Agricultural</u> <u>Research Tech.Bull</u> (Agr.) No. 11, New Delhi, India.PP.22.

Pl	ants height ((cm)				
Treatmen	t	2005				2006
Stand Der	nsity (P)	4 WAS 6 V	WAS	8 WAS	10 WAS	4 WAS
6	WAS	8 WAS	10 WAS			
1. plants/s	stand	13.61c	22.70c	31.4d	38.37b	13.37b
19.47 2. plants/s	h stand	25.76c 13.43c	38.09d 24.72c	34.89c	42.05d	
13.48	ab 19.48b	27.25b	c = 41.58d	27.04	50.22	
3. prants/s	stanu ob 10.40b	13.8900	27.020 40.20a	37.940	50.22C	
4. $plants/s$	au 19.490 stand	15.09b	28.89b	41.98b	57.55b	
14.45	ab 21.73a	b 29.24b	60.54b)		
5. plants/s	stand	17.59a	33.33a	46.65a	62.84a	15.03a
23.35	a	36.85a	80.21a			
$SE \pm$		0.486	0.937	1.099	1.214	0.509
0.	749	1.030	1.984			
Sowing D	ata (D)					
30 th June				55.40a	63.58a	15.26b
28	R 11a	17.48a	32.38a		001004	10.200
20		33.23a	62.93a			
14 th July		15.01b	32.28a	45.70b	53.64b	18.33a
24	.82b	31.97a	42.04c			
28 th July		13 87b	23 00b	28.160	25 74d	11.24
20 July	15c	25.09c	23.700 55.53b	20.100	23.74u	11.240
17	.150	25.070	55.550			
11 th Augu	st	12.52c	20.37c	25.08d	47.95c	11.65c
15	5.73c	28.69b	55.12b			
SE ±		0.434	0.838	0.983	1.086	0.455
0.	670	0.922	1.775			
Interaction	n					
P X D	NS	NS	**	NS	NS	
N	S	NS	NS			

Table 1: height of Roselle as affected by stand density and sowing date during 2005 and 2006 wet seasons at Samaru

Table	e 2: interaction t	between stand de	ensity and sow	ing date on pl	lant height (cm) at 8 wAS during
<u>2005</u>	wet at samaru				
Treat	tment sowing D	ate (D)			
	Stand Density ((P) 30 th June	14 th July	28 th July	11 th August
	1.	49.60c	34.44e	23.30f	18.50g
	2.	58.29ab	35.66e	22.87f	22.74f
	3.	56.37b	42.85c	28.90f	23.61f
	4.	56.09b	53.26b	30.13e	28.44f
	5.	56.64b	62.30a	35.59e	32.08e
	$SE \pm$	2.197			

Means in a column of any set of treatment followed by different letter (s) are significantly different at 5% level using DMRT **= Significant at 1% level NS = Not significant Table 2: interaction between stand density and sowing date on plant height (cm) at 8 WAS during

Interaction means followed by different letter (s) are significantly at 1% level of significance using DMRT.

Number of Leav	ves/Plant									
Treatment	2005								2006	
Stand Density (P) 4 WAS	6	1	8 WAS		10 WA	S	4 WAS	5	
6 WAS	8 WA	S	10 WA	S						
1. plants/stand 12.60a	14.25a 26.25	28.56a a	34.08a	38.56a		52.02a		6.06a		
2. plants/stand 10.40b	11.60b 15.64	22.07b b	19.99b	31.04b		44.60b		5.24b		
3. plants/stand 8.76c	10.33bc 13.51	21.12b bc	18.53b	27.29c		37.13c		5.00b		
4. plants/stand 8.52cd	10.20bc 11.32	21.35b c	17.92b	27.36c		33.07c	d	5.00b		
5. plants/stand 7.97d	9.38c 12.42	20.31b bc	15.38b	25.61c		29.73d		4.73b		
SE ± 0.255	0.577 1.292	0.718	2.100	1.154		1.674		0.272		
Sowing Date (D) 30 th June 18.34a	14.67 30.76	a a	32.30a 37.32a		52.42a		60.91a		7.99a	
14 th July 7.50b	11.32 13.80	b b	30.93a 15.11b		34.92b		39.62a		5.14b	
28 th July 6.66c	13.35 9.36c	a	19.24b 18.78b		22.08c		26.69c		4.41c	
11 th August 6.11c	5.27c 9.39c		8.25c 13.51b		10.46d		30.02c		3.29d	
SE ± 0.228	0.516 1.156		0.642 1.876		1.032		1.497		0.244	
Interaction PXD NO	Interaction									
$\frac{1 \times D}{NS}$	<u>s</u> NS		NS	110		<u></u>		<u> 110</u>		

Table 3: Number of leave/plant of Roselle as affected by stand density and sowing date during 2005 and 2006 wet season of Samaru

level using DMP'	т				-)			0	j		
NS – Not signific	ı Pant										
Table 4: Number	of branche	s/plant o	f Rosell	le as aff	ected by	v stand o	density	and sov	ving date	during	2005 and
2006 wet season	of Samaru	b, plane o	110501	te us un		stund	aonsiej	unu bo i	<u>ing aato</u>	<u></u>	<u>2000 unu</u>
Number of brancl	hes/Plant										
Treatment	2005								2006		
Stand Density (P)) 4 WAS	6 WA	S	8 WAS	5	10 WA	S	4 WAS	5		
6 WAS	8 W A	AS	10 WA	S							
1. plants/stand	3.60a	9.31a		12.15a	L	18.79a		2.10			
6.13a	12.52	la	15.50a								
2. plants/stand	3.57a	5.92b		10.32b)	14.25b		1.87			
4.76b	6.61b)	8.62c								
3. plants/stand	3.09a	5.56b		8.37c		10.68a		1.99			
4.37b	6.51t	С	18.53b)							
4. plants/stand	2.50b	4.97b		6.00d		8.65d		1.81			
4.30bc	6.75t)	8.32c								
5. plants/stand	1.94c	3.37c		3.86e		5.47e		1.88			
3.62c	5.92t)	7.23c								
SE±	0.577	0.718		1.154		1.674		0.272			
0.255	1.292	2	2.100								
Sowing Date (D)											
30 th June	4.05a	L	8.02a		13.04a		19.33a	L	1.65b		
7.75a	12.10)a	15.09a								
14 th July	2.69b)	7.58a		9.53b		11.69b)	3.39a		
5.71b	8.05t)	95.0b								

Means in a column of any set of treatment followed by different letter (s) are significantly different at 5%

28 th Jul	У	3.68a	5.15b	7.12c	8.75c	1.45bc
	3.05c	7.33b	9.37b			
11 th Au	gust	1.34c	2.56c	2.86d	6.50d	1.22c
	2.02d	4.41c	6.63c			
$SE \pm$		0.159	0.326	0.305	0.561	0.009
	0.222	0.618	0.520			
Interact	tion					
P X D	NS	NS	NS	NS	NS	
	NS	NS	NS			

Means in a column of any set of treatment followed by different letter (s) are significantly different at 5% level using DMRT

** Significant of 1% and 5% levels respectively

NS = Not significant

<u>at 10</u>	WAS duri	ng 200	15 and 2	2006 we	et seaso	<u>n as samaru</u>		
Numb	per of bran	iches/p	lant at	10 WAS	<u>S</u>			
Treat	ment 2005	2006						
Stand	Density (P)			Sowing	g Data (D)		_
Sowii	ng Data (D))						
	3	30 th Jur	ne,	14 th Jul	y,	28 th July,	11 th August	30 th June,
	14 th July,	,	28 th Jul	ly	11 th Au	ugust	C	
1.	3	30.67a		22.08c		13.17d	9.25ef	23.92a
	14.50b		16.08b		7.50			
2.	2	26.06b		13.21d		9.54e	8.17e	14.83b
	11.87c		10.34c		7.21			
3.	1	19.72c		10.50d		7.70e	4.80f	14.36b
	7.02d		7.97d		5.14			
4.	1	12.72d		8.08e		8.82e	5.54f	12.56c
	6.63d		7.31d		6.79			
5.	8	3.05e		4.60f		4.50f	4.73f	9.77c
	7.48d		5.13d		6.53			

Table 5: Interaction between stand density and showing date on the number of branches/plant at 10 WAS during 2005 and 2006 wet season as samaru Number of branches/plant at 10 WAS

Interaction means in the year followed by different letter (s) are significantly at 1% level of significance using DMRT

 $SE \pm 1.254$